Numpy에서는 배열에 적용되는 다양한 함수가 있다. 

다만,

단일 배열과 다중 배열에 사용되는 함수가 각각 다르므로 따로 정리해보자.

 

단일 배열에 적용되는 함수

우선 이차원 배열을 생성하자.

single_arr=np.random.randn(11,4)
single_arr

array([[-0.85420188,  0.42498577, -1.21781935, -2.469909  ],
       [-0.95437149,  0.84229281, -0.58423631,  0.16811405],
       [ 0.41291648, -0.60213293,  0.44054662,  0.00754592],
       [-0.49192662, -1.22210946,  1.82552474,  1.00134016],
       [-1.06566936,  0.74219896, -0.47628828, -0.5175951 ],
       [-0.0755429 ,  0.79078645,  0.95086558, -1.86214404],
       [ 1.50346299, -0.52695526, -0.28902625, -0.82038604],
       [ 0.81427752, -0.74730953,  0.64814457, -0.94949558],
       [ 0.70329552,  0.37535518, -0.43012094,  1.0470845 ],
       [-0.2881095 , -0.98918133, -1.76115028,  1.28901781],
       [ 1.37016394,  0.88699756,  0.43978861,  0.65941833]])

np.abs()

각 성분(요소)마다 절댓값 처리

np.abs(single_arr)

array([[0.85420188, 0.42498577, 1.21781935, 2.469909  ],
       [0.95437149, 0.84229281, 0.58423631, 0.16811405],
       [0.41291648, 0.60213293, 0.44054662, 0.00754592],
       [0.49192662, 1.22210946, 1.82552474, 1.00134016],
       [1.06566936, 0.74219896, 0.47628828, 0.5175951 ],
       [0.0755429 , 0.79078645, 0.95086558, 1.86214404],
       [1.50346299, 0.52695526, 0.28902625, 0.82038604],
       [0.81427752, 0.74730953, 0.64814457, 0.94949558],
       [0.70329552, 0.37535518, 0.43012094, 1.0470845 ],
       [0.2881095 , 0.98918133, 1.76115028, 1.28901781],
       [1.37016394, 0.88699756, 0.43978861, 0.65941833]])

np.sqrt()

제곱근 처리

np.sqrt(single_arr)

array([[       nan, 0.65190932,        nan,        nan],
       [       nan, 0.91776512,        nan, 0.41001713],
       [0.64258577,        nan, 0.66373686, 0.08686725],
       [       nan,        nan, 1.35111981, 1.00066986],
       [       nan, 0.8615097 ,        nan,        nan],
       [       nan, 0.88926174, 0.97512337,        nan],
       [1.22615782,        nan,        nan,        nan],
       [0.90237327,        nan, 0.80507426,        nan],
       [0.83862717, 0.61266237,        nan, 1.02327147],
       [       nan,        nan,        nan, 1.1353492 ],
       [1.17054002, 0.94180548, 0.66316559, 0.81204577]])

np.square()

제곱 처리

np.square(single_arr)

array([[7.29660856e-01, 1.80612901e-01, 1.48308397e+00, 6.10045049e+00],
       [9.10824947e-01, 7.09457185e-01, 3.41332063e-01, 2.82623330e-02],
       [1.70500017e-01, 3.62564070e-01, 1.94081323e-01, 5.69408884e-05],
       [2.41991798e-01, 1.49355153e+00, 3.33254059e+00, 1.00268211e+00],
       [1.13565117e+00, 5.50859302e-01, 2.26850526e-01, 2.67904688e-01],
       [5.70672981e-03, 6.25343204e-01, 9.04145352e-01, 3.46758044e+00],
       [2.26040097e+00, 2.77681849e-01, 8.35361732e-02, 6.73033254e-01],
       [6.63047882e-01, 5.58471536e-01, 4.20091384e-01, 9.01541857e-01],
       [4.94624593e-01, 1.40891513e-01, 1.85004022e-01, 1.09638595e+00],
       [8.30070859e-02, 9.78479713e-01, 3.10165031e+00, 1.66156692e+00],
       [1.87734923e+00, 7.86764671e-01, 1.93414018e-01, 4.34832532e-01]])

np.exp()

각 성분을 exponential의 지수로 삼은 값 계산한다.

np.exp(single_arr)

array([[0.42562275, 1.52956865, 0.29587466, 0.08459256],
       [0.38505408, 2.32168407, 0.55753148, 1.18307153],
       [1.5112188 , 0.5476423 , 1.55355619, 1.00757446],
       [0.61144723, 0.29460805, 6.20605075, 2.7219272 ],
       [0.34449719, 2.10054947, 0.62108441, 0.59595203],
       [0.92723995, 2.20512996, 2.58794877, 0.15533922],
       [4.49723603, 0.59039985, 0.74899254, 0.44026166],
       [2.25754406, 0.47363915, 1.91198997, 0.38693615],
       [2.02040002, 1.45550829, 0.65043043, 2.84933177],
       [0.7496795 , 0.37188101, 0.17184708, 3.62922023],
       [3.93599591, 2.42782929, 1.55237902, 1.93366725]])

np.log(), np.log10(), np.log2()

각 성분을 밑을 지정해 로그처리한다.

단, 밑이 자연로그, 상용로그, 2 만 가능하다.

np.log(single_arr)

array([[            nan, -8.55699603e-01,             nan,
                    nan],
       [            nan, -1.71627565e-01,             nan,
        -1.78311268e+00],
       [-8.84509941e-01,             nan, -8.19739009e-01,
        -4.88674844e+00],
       [            nan,             nan,  6.01867476e-01,
         1.33926199e-03],
       [            nan, -2.98137927e-01,             nan,
                    nan],
       [            nan, -2.34727327e-01, -5.03825721e-02,
                    nan],
       [ 4.07771109e-01,             nan,             nan,
                    nan],
       [-2.05454035e-01,             nan, -4.33641505e-01,
                    nan],
       [-3.51978101e-01, -9.79882548e-01,             nan,
         4.60096339e-02],
       [            nan,             nan,             nan,
         2.53880542e-01],
       [ 3.14930398e-01, -1.19913048e-01, -8.21461109e-01,
        -4.16397153e-01]])
np.log10(single_arr)

array([[            nan, -3.71625616e-01,             nan,
                    nan],
       [            nan, -7.45369044e-02,             nan,
        -7.74395996e-01],
       [-3.84137787e-01,             nan, -3.56008128e-01,
        -2.12228788e+00],
       [            nan,             nan,  2.61387724e-01,
         5.81634093e-04],
       [            nan, -1.29479656e-01,             nan,
                    nan],
       [            nan, -1.01940783e-01, -2.18808730e-02,
                    nan],
       [ 1.77092743e-01,             nan,             nan,
                    nan],
       [-8.92275539e-02,             nan, -1.88328113e-01,
                    nan],
       [-1.52862147e-01, -4.25557584e-01,             nan,
         1.99817301e-02],
       [            nan,             nan,             nan,
         1.10258919e-01],
       [ 1.36772534e-01, -5.20775749e-02, -3.56756027e-01,
        -1.80838986e-01]])
np.log2(single_arr)

array([[            nan, -1.23451357e+00,             nan,
                    nan],
       [            nan, -2.47606237e-01,             nan,
        -2.57248781e+00],
       [-1.27607811e+00,             nan, -1.18263340e+00,
        -7.05008774e+00],
       [            nan,             nan,  8.68311223e-01,
         1.93214663e-03],
       [            nan, -4.30122108e-01,             nan,
                    nan],
       [            nan, -3.38639951e-01, -7.26866869e-02,
                    nan],
       [ 5.88289357e-01,             nan,             nan,
                    nan],
       [-2.96407518e-01,             nan, -6.25612449e-01,
                    nan],
       [-5.07797062e-01, -1.41367169e+00,             nan,
         6.63778706e-02],
       [            nan,             nan,             nan,
         3.66272199e-01],
       [ 4.54348523e-01, -1.72997959e-01, -1.18511787e+00,
        -6.00734107e-01]])

np.sign()

각 성분(요소)의 부호 계산한다.

양수인 경우 1, 음수인 경우, -1, 0인 경우 0을 반환한다.

np.sign(single_arr)

array([[-1.,  1., -1., -1.],
       [-1.,  1., -1.,  1.],
       [ 1., -1.,  1.,  1.],
       [-1., -1.,  1.,  1.],
       [-1.,  1., -1., -1.],
       [-1.,  1.,  1., -1.],
       [ 1., -1., -1., -1.],
       [ 1., -1.,  1., -1.],
       [ 1.,  1., -1.,  1.],
       [-1., -1., -1.,  1.],
       [ 1.,  1.,  1.,  1.]])

np.ceil()

각 성분의 소수 첫 번째 자리에서 반올림 값 계산한다.

 

np.ceil(single_arr)

array([[-0.,  1., -1., -2.],
       [-0.,  1., -0.,  1.],
       [ 1., -0.,  1.,  1.],
       [-0., -1.,  2.,  2.],
       [-1.,  1., -0., -0.],
       [-0.,  1.,  1., -1.],
       [ 2., -0., -0., -0.],
       [ 1., -0.,  1., -0.],
       [ 1.,  1., -0.,  2.],
       [-0., -0., -1.,  2.],
       [ 2.,  1.,  1.,  1.]])

np.floor()

각 성분의 소수 첫 번째 자리에서 반내림한 값 계산한다.

np.floor(single_arr)

array([[-1.,  0., -2., -3.],
       [-1.,  0., -1.,  0.],
       [ 0., -1.,  0.,  0.],
       [-1., -2.,  1.,  1.],
       [-2.,  0., -1., -1.],
       [-1.,  0.,  0., -2.],
       [ 1., -1., -1., -1.],
       [ 0., -1.,  0., -1.],
       [ 0.,  0., -1.,  1.],
       [-1., -1., -2.,  1.],
       [ 1.,  0.,  0.,  0.]])

np.isnan()

각 성분이 결측치(NaN)인 경우 True, 아닌 경우 False를 반환한다.

np.isnan(np.log(single_arr))

array([[ True, False,  True,  True],
       [ True, False,  True, False],
       [False,  True, False, False],
       [ True,  True, False, False],
       [ True, False,  True,  True],
       [ True, False, False,  True],
       [False,  True,  True,  True],
       [False,  True, False,  True],
       [False, False,  True, False],
       [ True,  True,  True, False],
       [False, False, False, False]])

np.isinf()

각 성분이 무한대인 경우 True를, 아닌 경우 False를 반환한다.

np.isinf(np.square(single_arr))

array([[False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False]])

np.cos(),np.tan(),np.sin()

각 성분에 대해 삼각함수 값을 계산해준다. 

cos, cosh, sin, sinh, tan, tanh

 

np.sin(single_arr)

array([[-0.75404694,  0.41230781, -0.93834775, -0.62230479],
       [-0.81595055,  0.74617153, -0.55156252,  0.16732328],
       [ 0.40128239, -0.56640157,  0.42643396,  0.00754585],
       [-0.47232493, -0.93982217,  0.96773177,  0.84219432],
       [-0.87511304,  0.67591015, -0.45848373, -0.49479168],
       [-0.07547107,  0.71090659,  0.81391869, -0.95785762],
       [ 0.99773397, -0.50290398, -0.285019  , -0.73140914],
       [ 0.72722988, -0.67966771,  0.60370829, -0.81312199],
       [ 0.64673474,  0.36660301, -0.41698073,  0.86596887],
       [-0.28414016, -0.83557651, -0.98193733,  0.96056242],
       [ 0.97994075,  0.77517848,  0.4257482 ,  0.61265723]])
np.cos(single_arr)

array([[ 0.65682054,  0.9110446 ,  0.34569277, -0.78277503],
       [ 0.5781217 ,  0.66575374,  0.83413355,  0.98590208],
       [ 0.91595439,  0.82412939,  0.9045187 ,  0.99997153],
       [ 0.88142451,  0.34166399, -0.2519826 ,  0.53917412],
       [ 0.48391856,  0.73698404,  0.8887028 ,  0.86901162],
       [ 0.99714799,  0.70328644,  0.5809788 , -0.28724341],
       [ 0.06728247,  0.86434228,  0.95852187,  0.68193891],
       [ 0.68639398,  0.73352015,  0.79720531,  0.58209332],
       [ 0.762715  ,  0.93037747,  0.90891533,  0.5000979 ],
       [ 0.95878275,  0.5493741 , -0.18920647,  0.27806446],
       [ 0.19928907,  0.6317423 ,  0.90484168,  0.79034873]])
np.tan(single_arr)

array([[-1.14802582e+00,  4.52566003e-01, -2.71439794e+00,
         7.94998259e-01],
       [-1.41138197e+00,  1.12079209e+00, -6.61240061e-01,
         1.69715924e-01],
       [ 4.38103027e-01, -6.87272628e-01,  4.71448467e-01,
         7.54606189e-03],
       [-5.35865442e-01, -2.75072059e+00, -3.84047063e+00,
         1.56200807e+00],
       [-1.80838908e+00,  9.17129963e-01, -5.15902193e-01,
        -5.69372924e-01],
       [-7.56869302e-02,  1.01083505e+00,  1.40094389e+00,
         3.33465487e+00],
       [ 1.48290337e+01, -5.81834292e-01, -2.97352632e-01,
        -1.07254350e+00],
       [ 1.05949339e+00, -9.26583562e-01,  7.57280817e-01,
        -1.39689284e+00],
       [ 8.47937613e-01,  3.94036848e-01, -4.58767408e-01,
         1.73159868e+00],
       [-2.96355099e-01, -1.52096086e+00,  5.18976617e+00,
         3.45445948e+00],
       [ 4.91718257e+00,  1.22704856e+00,  4.70522307e-01,
         7.75173299e-01]])

두 개의 배열에 적용되는 함수

우선 두개의 배열을 생성하자.

single_arr

array([[-0.85420188,  0.42498577, -1.21781935, -2.469909  ],
       [-0.95437149,  0.84229281, -0.58423631,  0.16811405],
       [ 0.41291648, -0.60213293,  0.44054662,  0.00754592],
       [-0.49192662, -1.22210946,  1.82552474,  1.00134016],
       [-1.06566936,  0.74219896, -0.47628828, -0.5175951 ],
       [-0.0755429 ,  0.79078645,  0.95086558, -1.86214404],
       [ 1.50346299, -0.52695526, -0.28902625, -0.82038604],
       [ 0.81427752, -0.74730953,  0.64814457, -0.94949558],
       [ 0.70329552,  0.37535518, -0.43012094,  1.0470845 ],
       [-0.2881095 , -0.98918133, -1.76115028,  1.28901781],
       [ 1.37016394,  0.88699756,  0.43978861,  0.65941833]])
       
double_arr=np.random.rand(11,4)
double_arr

array([[0.48705458, 0.9637593 , 0.6738098 , 0.6541084 ],
       [0.61583841, 0.39743118, 0.55485998, 0.93706706],
       [0.0448264 , 0.88860695, 0.38479569, 0.45587065],
       [0.65356226, 0.73741626, 0.28991024, 0.59693486],
       [0.81154215, 0.91903639, 0.98248847, 0.08662736],
       [0.53407128, 0.55608402, 0.71851739, 0.29082239],
       [0.35009501, 0.99887153, 0.4568631 , 0.95589646],
       [0.30591951, 0.3999088 , 0.61395523, 0.38426602],
       [0.20310461, 0.53358661, 0.81670187, 0.7676948 ],
       [0.07961264, 0.57528379, 0.92982623, 0.99493861],
       [0.6184389 , 0.14453175, 0.68750759, 0.66940273]])

np.add(),np.substract(),np.multiply(),np.divide()

위 함수들은 동일한 shape일때 사칙연산을 해주는 함수들이다.

간단하게 multiply만 예로하고 넘어가겠다.

np.multiply(single_arr,double_arr)

array([[-0.41604294,  0.40958398, -0.82057861, -1.61558823],
       [-0.58773863,  0.33475342, -0.32416935,  0.15753414],
       [ 0.01850956, -0.53505951,  0.16952044,  0.00343996],
       [-0.32150467, -0.90120339,  0.52923832,  0.59773485],
       [-0.8648356 ,  0.68210786, -0.46794774, -0.0448379 ],
       [-0.04034529,  0.43974371,  0.68321346, -0.54155318],
       [ 0.52635489, -0.52636061, -0.13204543, -0.78420411],
       [ 0.24910338, -0.29885566,  0.39793175, -0.36485889],
       [ 0.14284257,  0.2002845 , -0.35128057,  0.80384132],
       [-0.02293716, -0.56905999, -1.63756373,  1.28249359],
       [ 0.84736269,  0.12819931,  0.30235801,  0.44141643]])

np.maximum(),np.minimum()

각 shape의 성분끼리 최대 최소값을 비교하여 하나의 배열로 만들어준다.

 

np.maximum(single_arr,double_arr)

array([[0.48705458, 0.9637593 , 0.6738098 , 0.6541084 ],
       [0.61583841, 0.84229281, 0.55485998, 0.93706706],
       [0.41291648, 0.88860695, 0.44054662, 0.45587065],
       [0.65356226, 0.73741626, 1.82552474, 1.00134016],
       [0.81154215, 0.91903639, 0.98248847, 0.08662736],
       [0.53407128, 0.79078645, 0.95086558, 0.29082239],
       [1.50346299, 0.99887153, 0.4568631 , 0.95589646],
       [0.81427752, 0.3999088 , 0.64814457, 0.38426602],
       [0.70329552, 0.53358661, 0.81670187, 1.0470845 ],
       [0.07961264, 0.57528379, 0.92982623, 1.28901781],
       [1.37016394, 0.88699756, 0.68750759, 0.66940273]])

Statistic Function

통계 함수를 통해 array의 합이나 평균등을 구할 때, axis라는 인자에 대한 값을 지정해주어 열 또는 행의 합 또는 평균등을 구할 수 있다.

 

single_arr

array([[-0.85420188,  0.42498577, -1.21781935, -2.469909  ],
       [-0.95437149,  0.84229281, -0.58423631,  0.16811405],
       [ 0.41291648, -0.60213293,  0.44054662,  0.00754592],
       [-0.49192662, -1.22210946,  1.82552474,  1.00134016],
       [-1.06566936,  0.74219896, -0.47628828, -0.5175951 ],
       [-0.0755429 ,  0.79078645,  0.95086558, -1.86214404],
       [ 1.50346299, -0.52695526, -0.28902625, -0.82038604],
       [ 0.81427752, -0.74730953,  0.64814457, -0.94949558],
       [ 0.70329552,  0.37535518, -0.43012094,  1.0470845 ],
       [-0.2881095 , -0.98918133, -1.76115028,  1.28901781],
       [ 1.37016394,  0.88699756,  0.43978861,  0.65941833]])

np.sum()

전체 성분의 합을 계산해준다.

np.sum(single_arr)

-1.8515573809143309

axis=0 : 행별 전체 합을 계산해준다.

np.sum(single_arr,axis=0)

array([ 1.0742947 , -0.02507179, -0.45377129, -2.447009  ])

aixs=1 : 열별 전체 합을 계산해준다.

np.sum(single_arr,axis=1)

array([-4.11694447, -0.52820094,  0.25887608,  1.11282882, -1.31735377,
       -0.19603492, -0.13290456, -0.23438302,  1.69561427, -1.74942331,
        3.35636844])

 

np.mean()

평균을 계산해준다.

np.mean(single_arr,axis=0)

array([ 0.09766315, -0.00227925, -0.04125194, -0.22245536])

np.std(),np.var(),np.min(),np.max()

표준편차,분산,최대 최소를 구해준다.

np.std(single_arr)

0.9683579692373014
np.min(single_arr,axis=1)

array([-2.469909  , -0.95437149, -0.60213293, -1.22210946, -1.06566936,
       -1.86214404, -0.82038604, -0.94949558, -0.43012094, -1.76115028,
        0.43978861])

np.argmin(),np.agrmax()

전체 성분의 최소값, 최대값이 위치한 인덱스를 반환.

np.argmin(single_arr)

3

 

np.argmax(single_arr,axis=1)

array([1, 1, 2, 2, 1, 2, 0, 0, 3, 3, 0], dtype=int64)

np.cumsum(), np.cumprod()

처음 성분부터 각 성분까지의 누적합 또는 누적곱을 계산해준다.

np.cumsum(single_arr)

array([-0.85420188, -0.42921612, -1.64703547, -4.11694447, -5.07131596,
       -4.22902315, -4.81325946, -4.64514541, -4.23222893, -4.83436187,
       -4.39381525, -4.38626933, -4.87819595, -6.10030541, -4.27478067,
       -3.27344051, -4.33910986, -3.5969109 , -4.07319918, -4.59079428,
       -4.66633718, -3.87555073, -2.92468515, -4.78682919, -3.2833662 ,
       -3.81032147, -4.09934772, -4.91973375, -4.10545623, -4.85276576,
       -4.20462119, -5.15411677, -4.45082125, -4.07546607, -4.50558701,
       -3.45850251, -3.74661201, -4.73579335, -6.49694363, -5.20792582,
       -3.83776188, -2.95076432, -2.51097571, -1.85155738])
np.cumprod(single_arr)

array([-8.54201882e-01, -3.63023641e-01,  4.42097215e-01, -1.09193989e+00,
        1.04211631e+00,  8.77767075e-01, -5.12823395e-01, -8.62128166e-02,
       -3.55986925e-02,  2.14351452e-02,  9.44318071e-03,  7.12574735e-05,
       -3.50534480e-05,  4.28391504e-05,  7.82039290e-05,  7.83087347e-05,
       -8.34512188e-05, -6.19374081e-05,  2.95000616e-05, -1.52690873e-05,
        1.15347114e-06,  9.12149347e-07,  8.67331419e-07, -1.61509603e-06,
       -2.42823712e-06,  1.27957233e-06, -3.69829992e-07,  3.03403362e-07,
        2.47054538e-07, -1.84626211e-07, -1.19664476e-07,  1.13620891e-07,
        7.99090642e-08,  2.99942814e-08, -1.29011685e-08, -1.35086135e-08,
        3.89195992e-09, -3.84985411e-09,  6.78017165e-09,  8.73976203e-09,
        1.19749068e-08,  1.06217131e-08,  4.67130840e-09,  3.08034638e-09])

np.sort()

전체 성분에 대해서 정렬해준다.

 

오름차순

np.sort(single_arr)

array([[-2.469909  , -1.21781935, -0.85420188,  0.42498577],
       [-0.95437149, -0.58423631,  0.16811405,  0.84229281],
       [-0.60213293,  0.00754592,  0.41291648,  0.44054662],
       [-1.22210946, -0.49192662,  1.00134016,  1.82552474],
       [-1.06566936, -0.5175951 , -0.47628828,  0.74219896],
       [-1.86214404, -0.0755429 ,  0.79078645,  0.95086558],
       [-0.82038604, -0.52695526, -0.28902625,  1.50346299],
       [-0.94949558, -0.74730953,  0.64814457,  0.81427752],
       [-0.43012094,  0.37535518,  0.70329552,  1.0470845 ],
       [-1.76115028, -0.98918133, -0.2881095 ,  1.28901781],
       [ 0.43978861,  0.65941833,  0.88699756,  1.37016394]])

 

내림차순

np.sort(single_arr)[::-1]

array([[ 0.43978861,  0.65941833,  0.88699756,  1.37016394],
       [-1.76115028, -0.98918133, -0.2881095 ,  1.28901781],
       [-0.43012094,  0.37535518,  0.70329552,  1.0470845 ],
       [-0.94949558, -0.74730953,  0.64814457,  0.81427752],
       [-0.82038604, -0.52695526, -0.28902625,  1.50346299],
       [-1.86214404, -0.0755429 ,  0.79078645,  0.95086558],
       [-1.06566936, -0.5175951 , -0.47628828,  0.74219896],
       [-1.22210946, -0.49192662,  1.00134016,  1.82552474],
       [-0.60213293,  0.00754592,  0.41291648,  0.44054662],
       [-0.95437149, -0.58423631,  0.16811405,  0.84229281],
       [-2.469909  , -1.21781935, -0.85420188,  0.42498577]])

 

행 방향으로 오룸차순

np.sort(single_arr,axis=0)

array([[-1.06566936, -1.22210946, -1.76115028, -2.469909  ],
       [-0.95437149, -0.98918133, -1.21781935, -1.86214404],
       [-0.85420188, -0.74730953, -0.58423631, -0.94949558],
       [-0.49192662, -0.60213293, -0.47628828, -0.82038604],
       [-0.2881095 , -0.52695526, -0.43012094, -0.5175951 ],
       [-0.0755429 ,  0.37535518, -0.28902625,  0.00754592],
       [ 0.41291648,  0.42498577,  0.43978861,  0.16811405],
       [ 0.70329552,  0.74219896,  0.44054662,  0.65941833],
       [ 0.81427752,  0.79078645,  0.64814457,  1.00134016],
       [ 1.37016394,  0.84229281,  0.95086558,  1.0470845 ],
       [ 1.50346299,  0.88699756,  1.82552474,  1.28901781]])

 

'Data analysis > Numpy' 카테고리의 다른 글

5. Array boolean 인덱싱(마스크)  (0) 2021.03.19
4. Array 인덱싱  (0) 2021.03.19
3. Array 연산  (0) 2021.03.19
2. zeros(),ones(),arange() 함수  (0) 2021.03.19
1.Numpy란?  (0) 2021.03.19

+ Recent posts